Online SAW- Bioaffinity- Mass Spectrometry: New Bioanalytical Tool for Detection, Structure Determination and Quantification of Protein-Ligand Interactions from Biological Material

Michael Przybylski
Laboratory of Analytical Chemistry and Biopolymer Structure Analysis
Department of Chemistry, University of Konstanz

www.uni-konstanz.de/agprzybylski/chemie
www.affinityms.de
Why online Bioaffinity-MS?

Ø Online HPLC-ESIMS: Standard for separation/quantification and identification of biopolymer mixtures

Ø Bioaffinity/biosensor determination of binding stoichiometry and affinity quantification of biopolymer-ligand interactions - but no molecular structure identification & characterisation

Ø Mass spectrometry: Identification of structures/interaction partners of protein-ligand complexes
OVERVIEW

I Online SAW- Biosensor-MS Combination:
 - Analytical Development - Interface
 - Application Examples

II Oligomerisation - Aggregation of Parkinson’s Disease Protein α-Synuclein:
 - Identification of Oligomer Intermediates,
 - Direct Analysis from Biological Material
Principle of Surface Acoustic Wave biosensor (SAW)

Mass loading $\Delta \varphi$
Visibility change $\Delta \varphi$ and ΔA

$$AB \xrightleftharpoons[k_{dissn}]{k_{assn}} A + B$$

$$K_D = \frac{k_{dissn}}{k_{assn}}$$
Affinity - MS:
Dissociation step: Elution interface needed

\[AB \xrightarrow{K_{off}} K_{on} A + B \]

\[K_d = \frac{K_{off}}{K_{on}} \]

K\text{on} - association rate constant
K\text{off} - dissociation rate constant
K\text{obs} - pseudo-first order kinetic constant
k\text{obs} = c \cdot k\text{on} - k\text{off}
SAW- Bioaffinity- Mass Spectrometry Combination
SAWMS – I

Interface
INTERFACE: Provides simultaneous desalting & concentration

Biosensor

-

- Elution

- Time (s)

- k_{on}

- k_{off}

- Flow 1

- Flow 2

- Pump system

- Waste

- 5 μm frit

- 1.5 cm x 1 mm packed

- 40 μm particle size

ESI-MS

- $[M+12H]^{12+}$

- $[M+13H]^{13+}$

- $[M+14H]^{14+}$

- $[M+15H]^{15+}$

- $[M+16H]^{16+}$

- $[M+17H]^{17+}$

- $[M+18H]^{18+}$

- m/z

- Intens.
Figure 1 Scheme of SAW- affinity- MS interface
Affinity- Chip for online SAW-MS: Simultaneous Detection & Isolation

Section through SAW element and fluidic cell

Section through affinity chip and fluidic cell
Key integrating function between biosensor and MS

Functions:
- Buffer desalting
- Flow rate equilibration
- Transfer of eluate to MS

C_4, C_{18} / Specific matrix
Online coupling of SAW- biosensor with ESI-MS
APPLICATION 1: Crystal structure of an Aβ-plaque specific antibody complex with N-terminal Aβ-epitope

\(\beta^- \) Amyloid formation & „\(\beta^- \) and \(\gamma^- \) secretase“ cleavage sites - Not well characterized
Selective proteolytic excision of antigens in immune complexes
-- Basis for mass spectrometric epitope identification

Preconditions:
Proteolytic stability of antibody
Epitope-Paratope Interaction shielded

Epitope peptide

Figure 2 MS Determination and affinity quantification of Aβ-specific antibody

Figure 2

(a) Aβ (1-40)

(b) Elution 5% ACN in 0.1 M HCl

(c) [M+5H]^{5+} 866.2442

(d) $K_{\text{obs}} = 7.3233 \times 10^{-4} + 3.65067 \times 10^{-5} \times c$

$R^2 = 0.986$

$K_D = 20.06 \pm 8.06 \text{ nM}$

H-DaEFRHDSGVEYHVHQLVFFA

EDVGSNKGAIGLMVGGV-NH$_2$
Affinity of anti-Aβ antibody with Aβ(1-16) by direct coupling SAW biosensor – ESI ion trap MS

Stefan Slamnoiu
Application 2: Online Affinity-MS with FTICR-MS: Interaction of p- anti-Lysozyme Ab – HEL

Lysozyme

- strongly basic protein of 129 residues (14.3 kDa)
- small secretory enzyme that catalyzes hydrolysis of β-1-4 glycosidic bond
- bacteriostatic, bactericidal and bacteriolytic activity
- very stable and compact enzyme with four disulfide bonds

1KVFRGCEAAAMKRHGLDNRYGISLGNWVCAAKFESNFNTQATNRNTDGSTDY
GILQINSRWWCNDGRTPGSRNLICSNPSALLSDITASVNCACKIVSDGNMN
VAWRNRCKGTVDQAWIRGCRL129

Ribbon structure, PDB 3IJV; E. Pechkova et al., 2010, to be published.
High resolution bioaffinity-MS of anti-HEL-antibody - Lysozyme interaction: “Top-Down” MS

Affinity Lysozyme

Desalting: 200 µl solvent A, flow rate 20 µl/min
elution: solvent B, flow rate 30 µl/min

FT-ICR-MS of elution fraction

Solvent A: 0.3 % HCOOH; solvent B: 0.3 % HCOOH / 80 % MeCN
Application 3: Tyrosine Nitration of Eosinophils

- Eosinophils: protection against infections
- EPO - in presence of H₂O₂ and halide catalyzes the formation of oxidants.
- EPO - catalyzes nitration with nitrite (NO₂⁻) and H₂O₂ as co-substrate
- ECP/EDN - are cytotoxic to bacteria and parasites
 - promotes degranulation of mast cell
Affinity MS identification of nitration sites by proteolytic-Affinity-Extraction - PROFINEX -

Trypsin / Thermolysin → In solution digestion → Digested peptides solution

ECP / EDN → 3NT antibody

Washing fraction → Non-binding peptide

Washing until no MS signal

Elution with 0.1% TFA → Elution fraction → Binding nitrated peptide

MS analysis

Prostacyclin Synthase - nitration of Tyr-430 in the catalytic center

Online SAW-MS: Identification of Tyr430-nitrated PCS peptide

H-GKRLKNY(NO$_2$)SLPWGA-OH [M+H]$^+$ 1533.813

K$_D$: 25 nmol

ESI-MS of elution fraction

\([M+4H]^4+\) 385.0
\([M+3H]^3+\) 512.3
\([M+2H]^2+\) 767.9
Application 4: Lectin- Carbohydrate Ligand Epitopes
CREDEX-MS

Galectins: β-galactosides-binding ability.
Highly conserved carbohydrate binding sites.
Metal-ion independent activity.
Do not form disulfide bridges.

Galectin-3-LacNAc complex Galectin-1-Lac complex
Analytical concept of CREDEX-MS:

Excision or Extraction

Carbohydrate

Lectin

Proteolytic degradation

Wash

Non binding fragments

Elution

Lectin epitopes
CREDEX-MS of galectin-3 interaction with lactose provides two specific CRD peptides (152-162) and (177-183)
CRD Peptides from CREDEX-MS in galectin-3
- COMPLETE AGREEMENT WITH CRYSTAL STRUCTURE

Structure of galectin-3 complexed with LacNAc (pdb file 1A3K).

Crystal structure: H158, N160, R162, N174, N171, W181, E184, R186

Galectin-3 in complex with LacNAc (pdb file 1A3K).
Online SAW-MS:
Identification and affinity quantification of Galectin-5 carbohydrate binding peptide

G5B

Elution:
10% H_3COOH in H_2O

\[
K_{\text{obs}} = k_{\text{off}} + C \times k_{\text{on}}
\]

\[
K_D = k_{\text{off}} / k_{\text{on}} = 192.7 \, \mu\text{M}
\]
OVERVIEW

I Online SAW- Biosensor-MS Combination:
 - Analytical Development - Interface
 - Application Examples

II Oligomerisation - Aggregation of Parkinson's Disease Protein α-Synuclein:
 - Identification of Oligomer Intermediates
 - Ion Mobility-, HDX- MS
 - Affinity-MS: Direct Analysis from Biological Material
Aggregation of α-Synuclein - key protein in Parkinson’s disease -

α-Synuclein

Oligomers?

DISEASE

Amyloid Fibrils

Lewy Body

Conway et al PNAS 2000
Goldberg and Lansbury, Nat Cell Blol 2001
Alpha- Synuclein shows “oligomers” AND degradation products
Direct mass spectrometry unsuccessful

2 – 6 days

<table>
<thead>
<tr>
<th>KDa</th>
<th>LMW</th>
<th>S4 (2 d)</th>
<th>S4 (4 d)</th>
<th>S3 (2 d)</th>
<th>S3 (4 d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S3 α-Syn in ammonium acetate
S4 α-Syn in ammonium acid carbonate

10 µg aggregates
15 % Separation gel
5 µl LMW marker
Autoproteolytic Fragments are Intermediates in the Oligomerization-Aggregation of Parkinson’s Disease Protein Alpha-Synuclein as Revealed by Ion Mobility Mass Spectrometry

[ChemBioChem 2011]
Fragmentation & Aggregation of Synucleins differentiate by the beta-breaking triplett (70-72)

Primary structure of human αSyn wt 1, αSyn triplet -mutants (αSyn NAP 2, αSyn VFS 3) and βSyn 4, and their structural behavior with particular emphasis on the analysis of aggregation process after 4 days of in vitro incubation, followed by B) gel electrophoresis. The boxed gel band (~9 kDa) of αSyn wt 1 was eluted and measured by MALDI

B) Autopreolytic αSyn fragment αSyn (72-140).
Selective mutation of key sequence in α-syn

α-syn wt

$1^{\text{MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKT}}$
$\text{KEGVVHGVAETVAEKTKEQVTNVGGAG}^{70} \text{VVT}^{72} \text{GVTAVAQKTVEGAG}$
$\text{SIAAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEE}$
GYQDYEPEA^{140}

α-syn 70^{NAN}^{72}

$1^{\text{MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKT}}$
$\text{KEGVVHGVAETVAEKTKEQVTNVGGAG}^{70} \text{NAN}^{72} \text{GVTAVAQKTVEGA}$
$\text{GSIAAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEE}$
EGYQDYEPEA^{140}
Online Affinity-MS of transgenic alpha-Syn-m-130 directly from brain homogenate: New structure modification

pC20: 200 nM
Brain elution homogenates: 10 µM

Camelia Vlad
Online SAW-affinity-MS of wt-aSyn in vitro (a) and from mouse brain homogenate (b)
Perspectives for affinity- mass spectrometry /

Online Affinity- Mass spectrometry

- Identification of antigen epitopes - vaccine lead structures
 Biomarker identification
 Ligand- binder recognition & interaction
 Conformational/topography characterisation
 Reactive intermediates in misfolding & aggregation
THANKS TO THE MAJOR PLAYERS...
... Coworkers, Collaborators, €€€...

Coworkers

Camelia Vlad
Kathrin Lindner
Nick Pierson
Adrian Moise
Dr. Marilena Manea
Stefan Slamnoiu
Mihaela Dragusanu
Gabriela Paraschiv
Madalina Maftei
Marius Iurascu
Nicole Engel

Collaborators

Bastian Hengerer, Boehringer Ingelheim
Michael Gross, Washington Univ. St.Louis
Marcel Leist, Martin Scheffner, Konstanz
David Clemmer, Indiana University
SAW- Instruments, Bonn

€€€

DFG
EU
Boehringer – Ingelheim,
Univ. Konstanz
BMWI

Biopolymer-MS & ChemBio Grad School
Antibodies to Human Proteome; RUBICON
Parkinson/ Synuclein
Research Center Proteostasis
Affinity-MS

Analytical Chemistry & Biopolymer Structure Analysis
University of Konstanz
SAW- Bioaffinity- Mass Spectrometry Combination
SAWMS – I

Details & Applications: michael.przybylski@uni-konstanz.de
www.affinity-ms.de